Aero-structural optimization of shape memory alloy-based wing morphing via a class/shape transformation approach 机翻标题: 暂无翻译,请尝试点击翻译按钮。

来源
Proceedings of the Institution of Mechanical Engineers, Part G. Journal of aerospace engineering
年/卷/期
2018 / 232 / 15
页码
2745-2759
ISSN号
0954-4100
作者单位
Univ Fed Rio de Janeiro, Dept Mech Engn, Rio De Janeiro, Brazil;Texas A&M Univ, Dept Aerosp Engn, 3141 TAMU, College Stn, TX 77843 USA;
作者
Leal, Pedro B. C.;Savi, Marcelo A.;Hartl, Darren J.;
摘要
Because of the continuous variability of the ambient environment, all aircraft would benefit from an in situ optimized wing. This paper proposes a method for preliminary design of feasible morphing wing configurations that provide benefits under disparate flight conditions but are also each structurally attainable via localized active shape change operations. The controlled reconfiguration is accomplished in a novel manner through the use of shape memory alloy embedded skin components. To address this coupled optimization problem, multiple sub-optimizations are required. In this work, the optimized cruise and landing airfoil configurations are determined in addition to the shape memory alloy actuator configuration required to morph between the two. Thus, three chained optimization problems are addressed via a common genetic algorithm. Each analysis-driven optimization considers the effects of both the deformable structure and the aerodynamic loading experienced by the wing. Aerodynamic considerations are addressed via a two-dimensional panel method and each airfoil shape is generated by the so-called class/shape transformation methodology. It is shown that structurally and aerodynamically feasible morphing of a modern high-performance sailplane wing produces a 22% decrease in weight and significantly increases stall angle of attack and lift at the same landing velocity when compared to a baseline design that employs traditional control surfaces.
机翻摘要
暂无翻译结果,您可以尝试点击头部的翻译按钮。
关键词/主题词
Shape memory alloys;multidisciplinary design optimization;airfoil parameterization;aircraft optimization;
若您需要申请原文,请登录。

最新评论

暂无评论。

登录后可以发表评论

意见反馈
返回顶部