Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties 机翻标题: 暂无翻译,请尝试点击翻译按钮。

Journal of Alloys and Compounds
2000 / 704 /
Elsevier B.V.
Jong-Min Ju 1;Guofeng Wang 1;Kyong-Ho Sim 1 1 Nat. Key Lab. of Precision Hot Process. of Metals, Harbin Inst. of Technol., Harbin, Harbin Institute of Technology, National Key Laboratory of Precision Hot Processing of Metals, Harbin, 150001, China gfwang@hit.edu.cn;
In this work, a new route for preparation of graphene reinforced aluminum (Al) matrix composites with enhanced dispersion and strength has been discussed based on aqueous suspension mixing procedure. Mg2+ ions added into mixture were used as binding bridge that anchored graphene sheets to the surface of Al powder, improving affinity and binding capacity of graphene sheets with Al matrix. Graphene nanosheets have double dispersion behaviors on Al matrix with increasing of Mg2+ concentration following colloidal theory (DLVO theory and Schulze-Hardy rule). Although composite billet consolidated through spark plasma sintering (SPS) has only 3 wt% content of graphene, but it was significantly reinforced in strength affected by the dispersion degree of graphene on composite matrix. [All rights reserved Elsevier]. J. Hwang, T. Yoon, S. H. Jin, J. Lee, T. S. Kim, S. H. Hong, S. W. Jeon, Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Advanced Materials. 25 (2013) 10.1002/adma.201302495 Meixia Li, Hongwei Che, Xiaoyan Liu, Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles. Journal of Materials Science. 49 (2014) 10.1007/s10853-014-8082-x Lian-Yi Chen, Hiromi Konishi, Axel Fehrenbacher, Chao Ma, Jia-Quan Xu, Hongseok Choi, Hui-Fang Xu, Frank E. Pfefferkorn, Xiao-Chun Li, Novel nano processing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scripta Materialia. 67 (2012) 10.1016/j.scriptamat.2012.03.013 J. L. Li, Y. C. Xiong, X. D. Wang, S. J. Yan, C. Yang, W. W. He, J. Z. Chen, S. Q. Wang, X. Y. Zhang, S. L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Materials Science and Engineering A. 626 (2015) 10.1016/j.msea.2014.12.102 Xin Gao, Hongyan Yue, Erjun Guo, Hong Zhang, Xuanyu Lin, Longhui Yao, Bao Wang, Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Materials &Design. 94 (2016) 10.1016/j.matdes.2016.01.034 J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia. 66 (2012) 10.1016/j.scriptamat.2012.01.012 S. E. Shin, H. J. Choi, J. H. Shin, D. H. Bae, Strengthening behavior of few-layered graphene/aluminum composites. Carbon. 82 (2015) 10.1016/j.carbon.2014.10.044 N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials. 11 (1999) 10.1021/cm981085u Yuxi Xu, Hua Bai, Gewu Lu, Chun Li, Gaoquan Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society. 130 (2008) 10.1021/ja800745y S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, R. S. Ruoff, Graphene oxide papers modified by divalent ions - enhancing mechanical properties via chemical cross-linking. ACS Nano. 2 (2008) 10.1021/nn700349a L. Jiang, G. L. Fan, Z. Q. Li, X. Z. Kai, D. Zhang, Z. X. Chen, S. Humphries, G. Heness, W. Y. Yeung, An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon. 49 (2011) 10.1016/j.carbon.2011.01.021 M. Bastwros, G. Y. Kim, C. Zhu, K. Zhang, S. R. Wang, X. D. Tang, X. W. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites. Part B, Engineering. 60 (2014) 10.1016/j.compositesb.2013.12.043 H. Kwon, M. Leparoux, A. Kawasaki, Functionally graded dual-nanoparticulate-reinforced aluminium matrix bulk materials fabricated by spark plasma sintering. Journal of Materials Science &Technology. 30 (2014) 10.1016/j.jmst.2014.03.003 Stephen F. Bartolucci, Joseph Paras, Mohammad A. Rafiee, Javad Rafiee, Sabrina Lee, Deepak Kapoor, Nikhil Koratkar, Graphene-aluminum nanocomposites. Sci. Eng. A. 528 (2011) 10.1016/j.msea.2011.07.043 M. Kubota, Properties of nano-structured pure Al produced by mechanical grinding and spark plasma sintering. Journal of Alloys and Compounds. 434–435 (2007) 10.1016/j.jallcom.2006.08.329 R. Pérez-Bustamante, F. Pérez-Bustamante, I. Estrada-Guel, L. Licea-Jiménez, M. Miki-Yoshida, R. Martínez-Sánchez, Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloy. Materials Characterization. 75 (2013) 10.1016/j.matchar.2012.09.005 S. J. Yan, S. L. Dai, X. Y. Zhang, C. Yang, Q. H. Hong, J. Z. Chen, Z. M. Lin, Investigating aluminum alloy reinforced by graphene nanoflakes. Materials Science and Engineering A. 612 (2014) 10.1016/j.msea.2014.06.077 H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon. 47 (2009) 10.1016/j.carbon.2008.10.041 Zulin Hua, Zhiqiang Tang, Xue Bai, Jianna Zhang, Lu Yu, Haomiao Cheng, Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments. Environmental Pollution. 205 (2015) 10.1016/j.envpol.2015.05.039 Chowdhury Indranil, C. Duch Matthew, D. Mansukhani Nikhita, C. Hersam Mark, Bouchard Dermont, Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environmental Science &Technology. 47 (2013) 10.1021/es400483k M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernán-dez, A. Martínez-Alonso, J. M. D. Tascón, Vitamin C is ideal substitute for hydrazine in the reduction of graphene oxide suspensions. The Journal of Physical Chemistry C. 114 (2010) 10.1021/jp100603h
aluminium;colloids;compressive strength;graphene;mixing;nanofabrication;nanostructured materials;particle reinforced composites;plasma materials processing;powders;sintering;suspensions;