Influemce Maximization Mining for Competitive Social Networks 机翻标题: 暂无翻译,请尝试点击翻译按钮。

作者
Cao, Xiao Ni
摘要
Influence maximization (IM) is one of the fundamental problems in the area of influence propagation in social networks. Recent studies in influence maximization have primarily focused on the diffusion of single influence. In this thesis, we study the problem under a new diffusion model named Competing General Threshold (CGT) model, which discovers k most influential nodes as early adopters of technology A (e.g., Apple) in a market where a competing technology B (e.g., Blackberry) already exists along with a set of early adopters of technology B. To solve IM under the diffusion of two influences, we first define the CGT diffusion model, then estimate both A and B influence probabilities by using Maximum-Likelihood Estimation from Twitter networks. Next, we propose a new algorithm named cgtMineA to find k influential A-seeds under the CGT model. Experimental results on Twitter networks show that our approach outperforms CELF.
机翻摘要
暂无翻译结果,您可以尝试点击头部的翻译按钮。
关键词
Computer science
页数
119
出版日期
2019-06-25
学位授予单位
University of Windsor (Canada)
学位年度
2015
学位
M.Sc.
语言
eng
院系
Computer science
导师
Ezeife, Christie I.
若您需要申请原文,请登录。

最新评论

暂无评论。

登录后可以发表评论


意见反馈
返回顶部