Attenuation of nitrates, antibiotics and pesticides from groundwater using immobilised microalgae-based systems 机翻标题: 暂无翻译,请尝试点击翻译按钮。


Groundwater pollution by nitrates and organic microcontaminants (OMCs) such as pesticides and antibiotics has increased in recent years due to the intensification of agriculture and livestock activities. Here we demonstrate, for the first time, the suitability of using microalgae immobilised in different materials (luffa sponge and polyurethane foam) to attenuate nitrates, antibiotics (sulfacetamide, sulfamethazine, and sulfamethoxazole), pesticides (bromacil, atrazine, diuron, bentazone, and mecoprop) from groundwater in two operational modes (batch and continuousfeeding). The results from the batch experiments show that OMC kinetic removal rates ranged from 0.01 to 0.18 d 1 , with halflives from 4 to 69 days. Immobilised microalgae in luffa and foam materials in the batch study was found to enhance the attenuation of selected OMCs from 36% to 51%, on average, after 10 operational days. Microalgae reactors in continuousfeeding operational mode out performed batch mode in terms of OMC removal (65% vs. 50%, on average) at a hydraulic residence time (HRT) of 8 days, whereas nitrate removal was greater in the batch experiments (81 vs. 48%, on average). OMC attenuation showed a high HRT dependence, but immobilised reactors were more resilient to the decrease in HRT. Further studies are needed, including the assessment of transformation products as well as the scaleup of the system to check the feasibility of the technology. Nevertheless, we expect our assay to be the starting point for the applicability of immobilisedmicroalgaebased systems for the treatment of polluted groundwater.


点击如下链接查看来源站点的原文: 原文链接