Understanding membrane fouling by oil-in-water emulsion via experiments and molecular dynamics simulations 机翻标题: 暂无翻译,请尝试点击翻译按钮。

来源
Journal of Membrane Science
年/卷/期
2018 / 566 /
页码
140-150
ISSN号
0376-7388
作者单位
Nanyang Technol Univ, Nanyang Environm & Water Res Inst, Singapore Membrane Technol Ctr, Singapore 637141, Singapore;Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore;Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore;Nanyang Technol Univ, Nanyang Environm & Water Res Inst, Environm Chem & Mat Ctr, Singapore 637141, Singapore;Nanyang Technol Univ, Nanyang Environm & Water Res Inst, Singapore Membrane Technol Ctr, Singapore 637141, Singapore;
作者
Tanis-Kanbur, Melike Begum;Velioglu, Sadiye;Tanudjaja, Henry J.;Hu, Xiao;Chew, Jia Wei;
摘要
Membrane-based filtration is promising for the treatment of oily wastewater with stable micron-sized oil droplets, but is unfortunately limited by the inevitable membrane fouling phenomenon. To advance the understanding on membrane fouling by oil emulsion, this study made use of the direct observation through the membrane (DOTM) technique to experimentally visualize the evolution of fouling and determine critical flux, and also molecular dynamics simulations to unveil the interfacial interactions and behaviors underlying the different fouling behaviors. Three oil emulsion types with similar mean droplet sizes were studied, namely, one without surfactant, one stabilized by sodium dodecyl sulfate (SDS; a negatively charged surfactant) and one stabilized by dodecyltrimethylammonium bromide (DTAB; a positively charged surfactant). DOTM results indicate that the critical flux was the highest in the absence of surfactant and lowest for the DTAB-stabilized ones, while simulation results indicate that the interaction energies are clearly different among the different oil emulsion types. Both hence affirm that the presence of surfactant and different surfactant type distinctly changes the fouling tendencies. The key conclusions on the different fouling tendencies among the three oil emulsion types are summarized as follows. Firstly, the highest critical flux in the absence of any surfactant is linked to greatest oil-water interaction and least oil-membrane interaction, both of which cause the oil molecule to prefer being in the bulk aqueous feed. The radial distribution function (RDF) further substantiates this. Secondly, the higher critical flux exhibited by the SDS-stabilized oil emulsion compared to the DTAB-stabilized ones could be attributed to the negative charge of the former. Simulations affirm the comparatively greater oil-membrane repulsion through the RDF profile, lower oil-membrane interaction and higher oil-water interaction of the SDS-stabilized oil emulsion. T
机翻摘要
暂无翻译结果,您可以尝试点击头部的翻译按钮。
关键词/主题词
Membrane fouling;Oil-in-water emulsion;Direct observation through the membrane (DOTM);Interaction energy;Critical flux;
若您需要申请原文,请登录。

最新评论

暂无评论。

登录后可以发表评论

意见反馈
返回顶部