类石墨烯结构二维氮化硼材料:结构特性、合成方法、性能及应用

2016-10-28

0 引言

某一维度上的尺寸在1~100nm之间的材料为一维或二维纳米材料。相对于块体材料,由于性能特殊且优异,一维、二维纳米材料已成为近20年的研究热点,且在许多领域有着巨大的应用潜能。自2004年发现单原子层石墨材料———石墨烯后,很快人们已经能够成功可控地剥离或合成单个或数个原子层石墨烯。在掀起了石墨烯研究热潮的同时,也给研究前沿带来一个新问题———与石墨烯相对应的BN薄膜(一种类石墨烯结构且仅由B原子和N原子组成的单原子层材料)是否同样能够大量制备并广泛运用。

氮化硼薄膜目前尚处于基础研究阶段,大批量生产高纯度和高结晶度的低维BN 纳米材料还具有一定难度和挑战性。目前氮化硼薄膜的主要制备方法有机械剥离法、化学剥离法、化学气相沉积法(Chemical vapor deposition,CVD)等。二维的BN纳米材料具有高热导率,高抗氧化性,高化学、热学稳定性,优良的电绝缘性以及良好的力学性能等,在多功能复合材料的改性、传感器件、场发射器件、紫外激光器件以及抗氧化涂层和超疏水涂层等方面将有重要应用。本文综述了近年来二维六方氮化硼薄膜材料结构性能的研究进展,并展望了氮化硼薄膜的潜在应用。

1 氮化硼的不同结构类型

1.1 块体氮化硼的结构类型

氮化硼BN和碳材料的结构相似,存在各种晶型。其中sp2 杂化的六方氮化硼(h-BN)是一种白色具有润滑性质的多晶型材料,类似石墨的层状结构。这种层状结构也可以斜方六面体(r-BN)的形式进行堆垛。BN其他常见的结构还有以sp3 杂化的立方氮化硼(c-BN),其结构类似金刚石,且是迄今已知第二硬的材料。BN 还有一种罕见的类似于六方碳的sp3 杂化纤锌矿结构(w-BN)。图1总结了BN 的各种晶型。

1.2 低维氮化硼的纳米结构

2004年,石墨烯出现不久之后人们便获得了从BN晶体上剥离的单独的二维BN薄膜。2008年,Chen等合成了长度可变、宽度较窄的BN纳米带。零维、一维和二维氮化硼纳米结构模型如图2所示。目前,BN纳米结构系统是最具应用前景的非碳纳米结构系统。以下各节讨论的BN 纳米结构均指纳米薄片或纳米带。

2 六方氮化硼薄膜的结构特性

单原子层六方氮化硼同单原子层石墨烯结构相同,只需将石墨烯中的碳原子全部替换成交替的硼原子和氮原子。同石墨烯相似,每层六方氮化硼中,原子间通过强共价键结合,而层间则有微弱的范德华力。六方氮化硼堆垛方式为AA′堆垛,其晶格参数和石墨烯十分接近,如表1所示。

  实际纳米材料中不可避免地存在拓扑结构上的缺陷,例如空位、吸附原子等,这些缺陷对纳米材料的电学性质和化学反应活性有显著影响。石墨烯中一种常见的缺陷是Stone-Wales缺陷,即六元环结构中碳原子的重排,在六方氮化硼薄膜中也存在Stone-Wales缺陷,可以形成五元环-七元环结构或者四元环-八元环结构,这些Stone-Wales缺陷位点具有较高的活性。Stone-Wales缺陷一般存在于BN纳米薄膜的畸变区,图3(a)-(c)为六方氮化硼薄膜中Stone-Wales缺陷。单原子层BN 薄膜的高分辨透射电镜图像(High resolution transmission electron,HRTEM)表明,BN晶界多由五元环-七元环结构构成,如图3(d)所示。

单原子层或双原子层BN 薄膜经高能电子辐照或离子刻蚀会出现点缺陷。图4为单原子层BN 中缺陷的HRTEM 图像,理论证明硼原子对电子的撞击有较低的能量阈值,大约74eV,而氮原子则为84eV,这说明硼原子比氮原子更容易在电子束的轰击下形成空位。因此,所有的点缺陷边缘终端原子应为氮原子。

3 六方氮化硼薄膜的合成

二维BN纳米结构具有多种合成方法,其中大部分均与合成石墨烯的方法相似。

3.1 机械剥离

工程应用中获得数个原子层BN 薄膜的常用方法为机械剥离法,该法在2004年由A.K.Geim等首先应用并获得了石墨烯,之后的几个月内,人们将该法成功运用于获得其他层状材料,例如BN、NbSe2和MoS2。机械剥离法采用固定于基底上(例如Si/SiO2)的黏性胶带进行剥离,此种方法获得的纳米薄片具有良好的厚度和截面尺寸,可以用于物理和光电子方面的基础研究。

2011年,Li等首先采用湿法球磨从BN 粉体上制备BN纳米薄片,将BN 薄膜剥离的作用力为剪切力。该法加入了苯甲酸苄酯作为球磨助剂,以减小球磨时对BN薄膜的碰撞和破坏。图5为采用该法制得的纳米薄片的扫描电子显微镜(Scanning electron microscope,SEM)图像以及相应的剥离机理。

3.2 化学剥离

2008年,Han等首次用化学溶液法从单晶BN 制备了单个和数个原子层BN纳米薄片。将单晶BN放入5mL的m-苯乙烯、2,5-dictoxy-p-苯乙烯共聚物的1,2-二氯乙烷溶液(1.2mg/10mL)中超声分散1h后,BN晶体剥离成片状BN。化学剥离法中需要加入强极性溶剂,例如N,N-二甲基甲酰胺(Dimethyl formamide,DMF),极性的DMF分子和BN表面有强烈的相互作用,有助于获得BN 纳米薄片。通过化学剥离法,可以获得毫克级别的纯BN 纳米薄片,且厚度均在2~10nm之间。

3.3 化学气相沉积(CVD)

3.3.1 外延生长

采用沉积技术外延生长BN 薄膜已有几十年历史。CVD法制备h-BN薄膜采用的二元系统先驱体有BF3-NH3、BCl3-NH3、B2H6-NH3,或者采用单一先驱体进行热解,例如环硼氮烷(硼吖嗪B3N3H6)、三氯环硼氮烷(B3N3H3Cl3)或者六氯环硼氮烷(B3N3H3Cl6)。其中,由环硼氮烷的热解可以沉积出化学计量比为1∶1的BN薄膜。通过CVD法可以在过渡金属上沉积BN 薄膜,例如3d族过渡金属Ni(111)、Co(111),4d族过渡金属钯Pd(111),5d族过渡金属Pt(111)等,h-BN薄膜与这些金属基底表面均能形成一定程度的结合。

目前在金属镍表面上沉积单原子层h-BN薄膜的研究较为深入。最近的研究表明,镍的d轨道与h-BN的π轨道存在很大程度的杂化,这说明在h-BN薄膜和金属基底之间有很强的结合。第一性原理的密度泛函理论(Density functional theory,DFT)研究表明,只有当氮原子在金属基底的上方且硼原子占据面心或者六方间隙位置时(如图6(a)所示),金属基底对硼原子的吸引大于对氮原子的排斥,h-BN薄膜才能与金属表面紧密结合。

除了金属Ni(111),在金属铜上也成功沉积了h-BN薄膜,h-BN/Cu(111)界面同以镍为基底的界面一样,h-BN薄膜和铜基底晶格相互匹配。有研究表明,采用NH3-BH3作为先驱体,通过低压化学气相沉积法(Low pressurechemical vapor deposition,LPCVD)可以在铜基底上生长三角形的单原子层BN(见图6(b)),在较高的先驱体升华温度(70~90℃)下,还形成了其他形状的晶粒,如图6(c)和(d)所示。为了在过渡金属基底上沉积出高质量、低畴界密度的二维BN层状材料,还需要较低的先驱体压力。图6(e)为采用低压环硼氮烷作为先驱体,在Ru(0001)上沉积BN的显微图像。首先在金属铷上形成稀疏的BN 晶核,这些晶核经过一段时间的生长直到显微镜下可观察的尺寸,最后合并成为覆盖整个金属表面的薄膜。

3.3.2 非外延生长

大部分BN薄膜制备的研究中,BN 都需要在基底上生长,然而不采用基底也可以生长出BN 薄膜。2009年,GaoRui等最先采用无催化化学气相沉积法,在1100~1300℃下成功制备出BN纳米薄片,他们以氧化硼(B2O3)和三聚氰胺粉末作为先驱体,通过控制不同的生长温度,可将薄膜的厚度控制在25~50nm之间。Angshuman Nag等采用硼酸(H3BO3)和尿素(CH4N2O)进行反应,也制备出了数个原子层BN纳米薄膜,BN薄膜的层数由反应物的浓度决定。

3.4 其他合成方法

3.4.1 高能电子辐照

独立的单原子层BN薄膜可以通过高能电子辐照,经可控的逐层溅射来制备。采用机械剥离法制备BN 纳米薄片或粉体时,通常还需要用密集的电子束辐照对获得的薄片和粉体进行减薄。直径为几个纳米的入射电子束集中照射在样品上,电子束的强度设置为一个较高值,通过电子束的手动扫描,BN纳米薄片被逐层减薄,直至获得单原子层的BN薄膜。

3.4.2 BN纳米管的打开

石墨烯纳米带可以通过打开壁厚为多个原子层的碳纳米管来制备,受此启发,人们通过氩气激光刻蚀将BN 纳米管打开,也制备出了BN纳米薄膜。Zeng Haibo等首先在Si基底上沉积出BN 纳米管,并旋涂聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)薄膜,然后剥离PMMA薄膜,接着再通过氩气激光刻蚀,将PMMA-BN 纳米管打开,最后再用丙酮蒸汽带走PMMA并煅烧以除去可能存在的含碳残余物,最终得到BN纳米带,如图7所示。

3.4.3 离子束溅射沉积

通过离子束溅射沉积(IBSD:Ion beam sputtering deposition)可以有效地合成h-BN薄膜。Wang Haolin等采用IBSD技术,以纯度为99.5%的Ni箔为基底进行h-BN薄膜的沉积。在采用IBSD生长h-BN薄膜之前,Ni箔首先由辅助离子源进行原位预刻蚀,然后在1000℃下退火10min。接着,如图8所示,主离子源发出的氩离子束(1.0×103 eV,1×10-4~4×10-4 A/cm-2)从h-BN靶材上溅射出B原子和N原子,在预处理后的Ni箔上进行沉积。整个溅射过程中,溅射腔体压力保持为3×10-2Pa,溅射沉积温度为1000℃。沉积结束之后,Ni箔和h-BN 薄膜在氩气氛围中冷却到室温,然后再对获得的h-BN进行转移和进一步表征。

4 六方氮化硼薄膜的性能及应用

单原子层的h-BN亦被称为“白石墨/石墨烯”,是一种类石墨烯的二维原子层状材料,其密度低,摩擦系数低且不导电,同时具有高温稳定性、低介电常数、高机械强度、高热导率、高硬度以及高的耐腐蚀性,在结构材料和电子材料中有许多潜在的应用。

4.1 电学性能及其应用

BN纳米材料是宽能带隙半导体(5.0~6.0eV)。由于BN的化学和热学稳定性,且没有悬挂键和表面电荷带,基于BN的石墨烯器件比基于SiO2的器件具有更高的迁移率和化学稳定性,场发射效应也得以改善。几个原子层厚的多层BN纳米薄膜-石墨烯异质结(例如BN-C-BN三明治结构)具有更高的电荷迁移率,达到500000cm2·V-1·s-1。C-BN-C型的异质结结构则用于制备场效应隧穿晶体管器件,该结构的电子隧穿电流测试显示,单原子厚的二维BN薄膜是一个良好的绝缘屏障,其隧穿电流的强度与BN薄膜的厚度呈指数级变化关系,即量子隧穿效应。

4.2 抗氧化性能及其应用

在空气中,二维h-BN薄膜在温度达到1500℃仍然十分稳定,与大部分的物质不发生反应,具有优异的热学和化学稳定性,可以用作高温下材料抗氧化的保护层。LiuZheng等采用CVD法,以氨硼烷(NH3BH3)为先驱体,在镍基底上制备了原子层数可控的h-BN薄膜。该研究表明数个原子层厚的h-BN薄膜在高温下对氧分子的扩散有阻碍作用,沉积了5nm厚的h-BN薄膜的金属镍仅有轻微的氧化,而未沉积h-BN薄膜的金属镍则氧化十分严重。因此,h-BN薄膜可以作为1100℃氧化环境下金属镍高效的抗氧化涂层。同时该研究还表明,覆盖了数个原子层厚h-BN薄膜的石墨烯在高温下抗氧化性也大大提高。

4.3 其他性能及其应用

热学性能方面,石墨烯优异的热传导性能引起了人们对其他具有蜂窝状晶格材料(例如BN)热传导性能研究的兴趣。室温下块体BN的热导率可以达到将近400W·m-1·K-1,比大部分的金属和陶瓷材料的热导率都高,BN纳米材料一个重要的应用是作为导热聚合物的填料。聚合物材料的热导率普遍较低,纳米材料由于有更高的比表面积,从而能更有效地改善聚合物基体的性能。

力学性能方面,研究表明BN纳米薄膜也同样具有良好的力学性能。Song Li等通过金刚石探针压印h-BN薄膜中心,测得了h-BN薄膜的力学性能,如图9所示,表2为不同厚度h-BN薄膜力学性能理论值和实验值对比,其中E2D为弹性参数,σm2D为预拉伸应力。

5 结语和展望

二维纳米材料的研究热潮大大促进了对h-BN薄膜的基础研究和应用探索。BN纳米材料性能优异,在许多科技领域具有巨大的应用潜能。然而相对于碳纳米材料系统(例如碳纳米管、石墨烯和富勒烯系列的纳米材料),BN纳米材料系统的基础物理研究和具体的应用还比较有限,同时生产高纯度和高结晶度的低维BN 纳米材料还具有一定难度和挑战性,从而限制了BN纳米材料大批量投入工业应用。本文概述了二维BN 纳米材料的结构、合成、性能和应用的研究进展。深入了解二维BN 纳米材料的性质特点及其研究现状,将能更好地将其应用于实践之中。

在BN的同素异形体中,由六方氮化硼h-BN可以制备出单原子层的BN纳米薄膜、纳米带等。单原子层h-BN和石墨烯结构相似,由相互交替的硼原子和氮原子取代石墨烯上的碳原子构成。h-BN 薄膜上的结构缺陷,包括Stone-Wales缺陷、空位、原子吸附以及晶界上的缺陷等,都会改变二维平面的sp2 杂化状态,引起薄膜的畸变,从而大大影响h-BN薄膜的性能。

有许多可以有效合成BN纳米材料的方法,例如机械剥离法、化学剥离法、CVD法、高能电子辐照和BN纳米管的打开等。然而,要大批量合成BN纳米材料还需要进一步改进合成工艺和条件,以满足工业中对BN 薄膜的层数、薄膜大小、边缘结构、缺陷控制等方面的要求,这也是BN纳米材料研究中最具挑战和难度之所在。

二维的BN纳米材料兼具高热导率,高效的抗氧化性,高化学、热学稳定性,优良的电绝缘性以及良好的力学性能,可以作为多功能复合材料的改性填料、热稳定催化剂、传感器件、耐用的场发射器件、紫外激光器件以及抗氧化涂层和超疏水涂层等。二维BN纳米材以其独有的优异特性,在不远的将来将有广泛的应用。

最新评论

暂无评论。

登录后可以发表评论


意见反馈
返回顶部