Design of bending dominated lattice architectures with improved stiffness using hierarchy 机翻标题: 暂无翻译,请尝试点击翻译按钮。

来源
Proceedings of the Institution of Mechanical Engineers, Part C. Journal of mechanical engineering science
年/卷/期
2019 / 233 / 11
页码
3976-3993
ISSN号
0954-4062
作者单位
Amer Univ Sharjah, Dept Mech Engn, Sharjah, U Arab Emirates;Amer Univ Sharjah, Dept Mech Engn, Sharjah, U Arab Emirates;Amer Univ Sharjah, Dept Mech Engn, Sharjah, U Arab Emirates;
作者
Alkhader, Maen;Nazzal, Mohammad;Louca, Karim;
摘要
Micro-architectured lattices are a promising subclass of cellular solids whose inner topologies can be tailored to enhance their stiffness. Generally, enhancing lattices' stiffness is achieved by increasing their connectivity. This strategy gives rise to a stiffer response by forcing lattices' ligaments to deform mainly in an axial manner. Conversely, this work is interested in developing micro-architectured lattices with enhanced stiffness, but whose cell walls deform in a flexural manner. Such structures can be more ductile and exhibit better energy mitigation abilities than their stretching dominated counterparts. Enhancing the stiffness of bending dominated lattices without increasing their connectivity can be realized by transforming them to hierarchical ones. This work explores, using experimentally verified finite element simulations, the effect of fractal-inspired hierarchy and customized nonfractal-based hierarchy on stiffness, anisotropy, and deformation mechanisms of an anisotropic bending dominated diamond lattice. Results show that fractal-inspired hierarchy can significantly enhance the stiffness of bending dominated lattices without affecting their deformation mechanisms or anisotropy level; ill-designed hierarchy can have a detrimental effect on lattice's stiffness; and customized hierarchy are more effective than fractal-inspired hierarchy in enhancing lattices' stiffness as well as can be more compatible with traditional, reliable, mass-producing manufacturing processes.
机翻摘要
暂无翻译结果,您可以尝试点击头部的翻译按钮。
关键词/主题词
Cellular solids;periodic structures;micro-architectures;fractal;finite element analysis;
若您需要申请原文,请登录。

最新评论

暂无评论。

登录后可以发表评论

意见反馈
返回顶部