Thermomechanical properties and deformation behavior of a unidirectional carbon-fiber-reinforced shape memory polymer composite laminate 机翻标题: 暂无翻译,请尝试点击翻译按钮。


A shape memory polymer (SMP) demonstrates large reversible deformation functionality upon exposure to heating stimuli. In this study, the thermomechanical properties and deformation behavior of a unidirectional carbonfiberreinforced SMP composite (SMPC) laminate were studied. The findings can be used as a basis to design angleply laminated plates, woven laminated plates, or special laminated structures used for space deployment. The fundamental static and dynamic mechanical properties of SMP and SMPC were characterized. The fiberreinforced SMPC exhibited local postmicrobuckling behavior and obtained a highreversible macroscale strain of 9.6%, which enabled the highreversible deformation to be used for foldable structures in space. The state of critical failure of bending deformation was determined through microscale morphology observations and provided the upper limit in the design of SMPC structures. The evolution of the key shape memory properties (e.g., recovery speed and recovery ratio) during deformation cycles was characterized, and it offered the general recovery performance of a space deployable structure. 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48532.


点击如下链接查看来源站点的原文: 原文链接