Totally found 874 items.

  • [期刊] Simulating PFAS transport influenced by rate-limited multi-process retention
    The transport of per- and poly-fluoroalkyl substances (PFAS) in the vadose zone is complicated by the fact that multiple mass-transfer processes can contribute to their retention and retardation. In addition, PFAS transport at some sites can be further complicated by the presence of organic immiscible liquids (OIL). Mass-transfer processes are inherently rate limited and, therefore, have the potential to cause nonideal transport of PFAS. The objectives of this research were to: (1) develop a solute-transport model that explicitly accounts for multiple retention processes, including adsorption at air-water and OIL-water interfaces, adsorption by the solid phase, and diffusive mass-transfer between advective and non-advective domains, and (2) apply the model to measured transport data to delineate which processes are rate limited and contribute to observed nonideal transport. Breakthrough curves for transport of two PFAS and one hydrocarbon surfactant in sand obtained from prior miscible-displacement experiments exhibited nonideal transport. The multiprocess model effectively simulated the measured transport data. The results of the analyses indicate that adsorption at the air-water and OIL-water interface can generally be treated as effectively instantaneous for transport in porous media. The rate limitations associated with solid-phase adsorption and diffusive mass transfer between advective and nonadvective domains were of greater significance. (C) 2019 Elsevier Ltd. All rights reserved.
  • [期刊] Multifunctional modified polyvinyl alcohol: A powerful biomaterial for enhancing bioreactor performance in nitrate, Mn(Ⅱ) and Cd(Ⅱ) removal
    The co-existence of multiple pollutants in wastewater such as nitrate and heavy metal, is of high concern due to the potential environmental impact. In this study, a novel biomaterial PPy@Fe3O4/PVA was synthesized as a multifunctional bacteria immobilized carrier, to enhance simultaneous denitrification, Cd(II) and Mn(II) removal efficiency in bioreactor environments. The morphology and main components of the PPy@Fe3O4/PVA material were characterized by SEM and XRD. Using PPy@Fe3O4/PVA as a carrier, the maximum removal efficiencies for nitrate (0.207 mg L-1.h(-1)), Mn(II) (90.98%) and Cd(II) (98.78%) were increased by 27.05%, 30.27%, and 16.48%, respectively, compared to in the absence of PPy@Fe3O4/PVA. Regeneration experiments were performed, demonstrating the excellent stability and reusability of the PPy@Fe3O4/PVA material. Furthermore, effects of key factors were investigated on the performance of the PPy@Fe3O4/PVA bioreactor in simultaneous denitrification, Mn(II) and Cd(II) removal. Experimental results indicate that the highest nitrate, Mn(II) and Cd(II) removal efficiencies were obtained under the conditions of HRT of 10 h, initial Mn(II) concentration of 40 mg/L and initial Cd(II) concentration of 10 mg/L. Gas chromatography analysis indicated that N-2 was the mainly final gaseous product. Moreover, the bioreactor community diversity was markedly influenced by the initial concentration of Cd(II) and Pseudomonas sp. H117 played a primary role in the process of simultaneous denitrification, Mn(II) and Cd(II) removal. (C) 2019 Elsevier Ltd. All rights reserved.
  • [期刊] Tracking functional bacterial biomarkers in response to a gradient of contaminant exposure within a river continuum
    Within all aquatic environments, aside from the physical dispersal of dissolved and/or particulate phase contaminants, alteration from both biological and chemical processes are shown to change the chemistry of the parent compounds. Often these alterations can lead to secondary influences because of cooperative microbial processes (i.e. coupled respiratory pathways and/or energy and biodegradation cycles), complicating our understanding of the biological impact that these mobile compounds impose on ecosystem health. The McMurray Formation (MF) (the formation constituting the minable bituminous oil sands) is a natural, ongoing source of hydrocarbon-bound sediments to river ecosystems in the region (via terrestrial and aquatic erosion), providing a natural "mesocosm" to track and characterize the effects of these compounds on regional aquatic primary productivity. Here we characterize the natural, in-situ microbial response to increasing hydrocarbon exposure along a river continuum in the downstream direction. Using the Steepbank River (STB), suspended and bed sediment samples were collected at 3 sites from upstream to downstream, as the water flows into and through the MF. Samples were then analyzed for the active, in-situ gene expression of the microbial communities. Results from both suspended and bed sediments show clear and significant shifts in the microbial metabolic processes within each respective compartment, in response to the elevated polycyclic aromatic compound (PAC) concentrations. Specific genes likely responsible for hydrocarbon breakdown (Alkane Monooxygenase, Benzoyl-CoA Reductase etc.) experience elevated expression levels, while certain energy metabolism genes (nitrogen, sulfur, methane) reveal fundamental shifts in their pathway specificity, indicating an adaptation response in their basic energy metabolism. Expression from suspended sediments reveal subtle yet delayed metabolic response further downstream compared to bed sediments, indicative of the erosion and transport dynamics within a lotic system. These results provide insight into the use of novel clusters of gene biomarkers to track the active, in-situ microbial response of both emerging and legacy contaminants. Such information will be important in determining the best management strategies for the monitoring and assessment of aquatic health in both natural and contaminated ecosystems. Crown Copyright (C) 2019 Published by Elsevier Ltd. All rights reserved.
  • [期刊] Occurrence and source apportionment of novel and legacy poly/ perfluoroalkyl substances in Hai River basin in China using receptor models and isomeric fingerprints
    A variety of fluorinated alternatives are being manufactured and applied as a consequence of stringent regulations on legacy poly/perfluoroalkyl substances (PFASs). In this study, 26 emerging and legacy PFASs were measured in the surface water (including dissolved phase and suspended particulate matter) and sediments taken from Hai River basin, China. The total concentrations of PFASs (Sigma PFASs) ranged from 1.74 to 172 ng/L, with perfluorooctanonate (PFOA) as the dominant compound (15.2% of the Sigma PFASs, median value). Emerging PFASs, such as dimer acid of hexafluoropropylene oxide dimer acid (HFPO-DA) and trimer acid (HFPO-TA), were widely detected in the water samples. Specifically, chlorinated polyfluorinated ether sulfonate (F-53B) was observed to be predominant in some sediment samples. A receptor model, Unmix, was introduced to identify the sources of PFASs in the surface water, and the results indicated that fire-fighting foam/fluoropolymer processing aids (36.6%) were the dominant source. The field-based sediment-water (organic carbon normalized) coefficients, K-oc, were correlated to the carbon chain lengths of the PFASs. A technique coupling one-way analysis of variance with chemical mass balance model was developed to trace the manufacturing sources of PFOA. Electrochemical fluorination (ECF) was the major PFOA manufacturing source with considerable contribution by telomerization. For the first time, the isomers of perfluorooctane sulfonamide (PFOSA) were quantified in the environmental samples. The lower proportion of branched (br(-)) PFOSA isomers and higher percentage of br-perfluorooctane sulfonate (PFOS) isomers in the water samples relative to their corresponding commercial products, provided more direct evidences that br-PFOSA isomers were biotransformed more easily than n-PFOSA, explaining the observed enrichment of br-PFOS in the aquatic environment. (C) 2019 Elsevier Ltd. All rights reserved.
  • [期刊] Shaping microbial consortia in coupling glycerol fermentation and carboxylate chain elongation for Co-production of 1,3-propanediol and caproate: Pathways and mechanisms
    Glycerol is presently being generated in surplus with the rapid growth of the biodiesel industry and seeks ways to be upcycled, rather than to be treated with costs. Glycerol for the co-production of 1,3-propanediol (1,3-PDO) and caproate has a great prospect. Yet, its technical difficulty lies in the enhancement of caproate productivity, which requires the presence of ethanol as a co-substrate and necessitates the co-existence of functional microbes for glycerol fermentation and chain elongation. This study successfully achieved 6.38 mM degrees C 1,3-PDO d(-1) and 2.95 mM degrees C caproate d(-1) in a 2-L mixed-cultured semi-continuous fermenter with a glycerol-ethanol-acetate stoichiometric ratio of 4:3:1. Such conversions were mainly facilitated by a microbial community of Eubacterium limosum, Clostridium kluyveri and Massilibacterium senegalense. With such a synergistic microbiome, the co-production of 1,3-PDO and caproate was achieved from glycerol without ethanol addition. Based on metagenomics, E. limosum is capable of converting glycerol to 1,3-PDO, ethanol and H-2, and also redirecting the electron potential of H-2 into acetate via the Wood-Ljungdahl pathway, which is then used for chain elongation. C kluyveri worked synergistically with E. limosum by consuming ethanol and acetate for caproate production. M. senegalense encodes for ethanol oxidation to acetate and butyrate, facilitating the generation of these intermediates for C kluyveri elongation to caproate. During the transition between fermentation and elongation, an unexpected observation of poly-beta-hydroxybutyrate (PHB) formation and reutilization by M. senegalense may be associated with butyrate formation for further caproate generation. The knowledge gleaned from the substrate constitute, microbial consortium and their synergetic metabolism demonstrates a resource upgrade potential for crude glycerol or glycerol-containing wastewater generated from the biodiesel industry. (C) 2018 Elsevier Ltd. All rights reserved.
  • [期刊] Interactions between suspended particulate matter and algal cells contributed to the reconstruction of phytoplankton communities in turbulent waters
    The effect of turbulence on phytoplankton growth has been widely studied; however, its effects with respects to suspended particulate matter (SPM) on the development of phytoplankton communities and the behavioral responses of phytoplankton to turbulence and SPM are poorly understood. Here, an approximately homogeneous turbulence simulation system (ANTS, mainly consisting of an oscillating grid apparatus) was established to gain insight into the mechanisms underlying phytoplankton community responses in turbid, well-mixed waters. The results revealed that maintaining the turbulence dissipation rates (epsilon) of 2.25 x 10(-3) and 1.80 x 10(-2) m(2)/s(3) caused significant reductions in algal density, and the effects could be substantially enhanced when 500 mg/L of SPM were added before day 12. In contrast to the constant decrease of algal density for the epsilon of 2.25 x 10(-3) m(2)/s(3), a dramatic increase in the phytoplankton density occurred after 16 days of incubation for a epsilon of 1.80 x 10(-2) m(2)/s(3), irrespective of SPM. Addition of SPM in the epsilon of 1.80 x 10(-2) m(2)/s(3) treatments did not considerably affect the algal density profile compared to that without SPM, of which unicellular algae decreased and colonial algae dominated the phytoplankton community. On the other hand, the phytoplankton can regulate the SPM properties. During the 18 days' coincubation, extracellular polymeric substances (EPS) released from algal cells induced larger particle sizes and round surfaces of SPM, which can reduce the damage received to algal cells. Here we demonstrated that the phytoplankton communities could actively counteract the effects of turbulence + SPM and adapt the couple stress, jointly through the release of EPS, the modification of SPM surface properties and the conversion of their assemblage pattern, thereby contributing to rebalance the ecosystem. These findings highlight the strategies employed during the reconstruction of phytoplankton under the dual effects of turbulence and SPM for the first time, consequently enabling the forecasting of the dominant species of phytoplankton in turbulent waters. (C) 2018 Elsevier Ltd. All rights reserved.
  • [期刊] A compilation and bioenergetic evaluation of syntrophic microbial growth yields in anaerobic digestion
    A compilation and analysis of experimentally determined microbial growth yields for syntrophic volatile fatty acid (VFA), lactate oxidisers and methanogens in anaerobic digestion (AD) systems is presented. Only studies based on experimental determinations or sound model-to-data fitting that specifically address parameter identifiability, have been considered. The experimentally determined values are compared and discussed with estimations based on bioenergetic correlations. Only for acetoclastic methanogens the experimentally determined microbial yields appear in good consistency with bioenergetic estimations. For syntrophic microbial groups, the experimetal yield values reported appear much higher than those expected from the low amount of metabolic energy available. These large deviations imply either inaccuracy on the microbial biomass quantification methods or that the syntrophic interspecies electron transfer occurs under mechanisms, or hydrogen equivalent intermediate activities, much below those ever observed in methanogenic environments. In addition, the microbial growth yield values most widely adopted in AD model applications (those reported in the IWA Anaerobic Digestion Model No. 1 (ADM1)) are even higher than the experimental determinations from literature. It is therefore proposed that microbial growth yield values should be restricted by the maximum harvestable ATP calculated through a detailed bioenergetic pathway analysis. Model simulations with different parameter configurations for different yield sources (default ADMI, experimentally determined and bioenergetically estimated values) displayed low sensitivity of the simulations with respect to the yield values as long as the maximum specific microbial growth rate (lima.) remain the same. This suggests that model calibrations could target the accuracy of mu(max) maintaining the bioenergetic upper limit for microbial growth yields. (C) 2019 Elsevier Ltd. All rights reserved.
  • [期刊] Understanding and modelling the diffusion process of low molecular weight substances in polyethylene pipes
    Peroxides are widely used as crosslinkers in polyethylene (PE) drinking water pipes. Cross-linked polyethylene (PEX) has better mechanical properties than PE, but peroxide decomposition by-products can migrate from PEX water pipes into the drinking water unless sufficient preventive actions are undertaken. This work systematically examines the migration of tert-Butyl methyl ether (MTBE), a dominating crosslinking by-product from PEX water pipes, into tap water by utilizing both experimental techniques and finite element (FEM) diffusion modeling. The effects of pipe geometry, tap water temperature (23-80 degrees C), boundary conditions (air or water interface) and degasing (at 180 degrees C) were considered. The MTBE diffusivity increased strongly with increasing temperature and it was concluded that a desired water quality can be achieved with proper degasing of the PEX pipes. As the FEM simulations were in excellent agreement with the experimental results, the model can accurately predict the MTBE concentration as a function of time, water temperature and PEX pipe geometry, and enable the pipe manufacturers to aid in ensuring desirable drinking water quality. (C) 2019 Elsevier Ltd. All rights reserved.
  • [期刊] Capturing the oxic transformation of iopromide - A useful tool for an improved characterization of predominant redox conditions and the removal of trace organic compounds in biofiltration systems?
    The biological degradation of many trace organic compounds has been reported to be strongly redox dependent. The traditional characterization of redox conditions using the succession of inorganic electron acceptors such as dissolved oxygen and nitrate falls short in accurately describing the critical transition state between oxic and suboxic conditions. Novel monitoring strategies using intrinsic redox tracers might be suitable to close that gap. This study investigated the potential use of the successive biological transformation of the iodinated contrast medium iopromide as an intrinsic tracer of prevailing redox conditions in biofiltration systems. Iopromide degradation in biofiltration systems was monitored by quantifying twelve known biological transformation products formed under oxic conditions. A novel dimensionless parameter (T-IOP) was introduced as a measure for the successive transformation of iopromide. A strong correlation between the consumption of dissolved oxygen and iopromide transformation emphasized the importance of general microbial activity on iopromide degradation. However, results disproved a direct correlation between oxic (>1 mg/L O-2) and suboxic (<1 mg/L O-2) conditions and the degree of iopromide transformation. Results indicated that besides redox conditions also the availability of biodegradable organic substrate affects the degree of iopromide transformation. Similar behavior was found for the compounds gabapentin and benzotriazole, while the oxic degradation of metoprolol remained stable under varying substrate conditions. (C) 2019 Elsevier Ltd. All rights reserved.
  • [期刊] Photoreactivation of fungal spores in water following UV disinfection and their control using UV-based advanced oxidation processes
    The occurrence of repair system in microorganisms after ultraviolet (UV)-induced damage to them evokes concern regarding the effectiveness of UV disinfection. Most studies focus on the repair of bacteria, but little research has been conducted on the repair of fungi in water. This study aimed to investigate the photoreactivation and dark repair properties of three dominant genera of fungal spores (Trichoderma harzianum, Aspergillus niger, and Penicillium polonicum) isolated from groundwater. UV-based advanced oxidation processes (AOPs) (including UV/peroxymonosulfate and UV/hydrogen peroxide) were used to control their photoreactivation. The results demonstrated that the three genera of fungal spores inactivated by UV (254 nm) exhibited different levels of photoreactivation under UVA (365 nm) exposure, and the photoreactivation percentage showed that T. harzianum (51.35%) > A. niger (29.07%) > R polonicum (9.01%). The photoreactivation process of fungal spores was well described by the first-order model. T. harzianum had lower photoreactivation percentage but a more rapid initial photo reactivation process than E. coli. Higher UV dosages significantly decreased the photoreactivation percentage of fungal spores. However, dark repair was insignificant following UV disinfection for all the three genera of fungal spores. After treatment by UV-based AOPs, the fungal spores exhibited the same photoreactivation trend as those treated by UV alone. However, both the maximum survival ratios and photoreactivation rate constants were reduced to varying degrees. This study revealed the photoreactivation rule of dominant genera of fungi isolated from groundwater following UV treatment alone and UV-based AOPs, which is effective for controlling fungi in water. (C) 2018 Elsevier Ltd. All rights reserved.